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Abstract 

Medicine historically separates abstract clinical reasoning from physical intervention. We bridge this 

divide with MedOS, a general-purpose embodied world model. Mimicking human cognition via a dual-

system architecture, MedOS demonstrates superior reasoning on biomedical benchmarks and 

autonomously executes complex clinical research. To extend this intelligence physically, the system 

simulates medical procedures as a physics-aware model to foresee adverse events. Generating and 

validating on the MedSuperVision benchmark, MedOS exhibits spatial intelligence for reasoning and 

action. Crucially, we demonstrate that this platform democratizes clinical expertise and narrows the 

performance gap between junior and senior physicians. MedOS transforms clinical intervention 

towards a collaborative discipline where human intuition and machine intelligence co-evolve. 

 

Keywords: World Models, Spatial Intelligence, Embodied AI, Surgical Robotics, Extended Reality (XR) 
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INTRODUCTION 

Medicine relies on the integration of clinical reasoning to diagnose disease and physical execution to 

intervene. While recent advances in artificial intelligence have transformed the reasoning domain, with 

large language models potentially achieving expert proficiency in medical licensing exams and 

diagnostic dialogue, the physical domain of interventions remains a critical bottleneck1,2. Clinical 

outcomes depend not merely on static knowledge but on perception, dexterity, and real-time decision-

making under uncertainty. Current medical AI remains largely disembodied and confined to the digital 

analysis of electronic health records or static imaging, leaving it unable to perceive or act in the 

dynamic reality of procedural medicine 3,4. Conversely, surgical robotics provide precision tele-

operation but potentially remain unintelligent that are blind to anatomical context and somewhat 

dependent on human control 5,6. 

 

To bridge this fundamental divide, we introduce MedOS, a unified collaborative intelligence platform 

that renders clinical environments perceivable and operable by AI. MedOS represents a conceptual 

shift from passive data analysis to the idea of embodied world model. It integrates agentic reasoning 

with extended reality enabled multimodal interfaces and robotic control systems to create an end-to-

end framework that links longitudinal patient history in the digital world to real-time interaction in the 

physical world. By grounding abstract medical knowledge into a dynamic state space, MedOS enables 

the AI to function not merely as a consultant but as a perceiving co-physician capable of active 

collaboration. 

 

The architectural innovation of MedOS lies in its mimicry of expert human cognition through a dual-

system mechanism 7,8. In clinical practice, a physician or surgeon should seamlessly toggle between 

expert strategy and deliberate action. MedOS operationalizes this by employing a system 2 slow agent 

to process macro-context such as demographics and meso-context such as perioperative plans, while 

simultaneously deploying a system 1 fast agent to handle millisecond-level risk perception and reflex-

like guidance. This architecture allows the AI to simulate a physics model by reasoning about force 

vectors, predicting tissue responses, and identifying adverse events such as bleeding risks in real-

time. 

 

In this work, we present an end-to-end instantiation of MedOS for the interventional domain. On the 

reasoning front, the system achieves state-of-the-art accuracy on challenging biomedical benchmarks 

and outperforms frontier models through a self-evolving critique loop. To enable physical perception, 

we constructed MedSuperVision, a large-scale benchmark of egocentric surgical videos annotated 

with expert narratives and instrument dynamics. Recognizing that general-purpose vision-language 

models struggle with the subtle textures and depth of biological tissue, we trained a domain-
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specialized world model using group relative policy optimization. This training enables MedOS to 

decode visual input from extended reality glasses to execute counterfactual prediction, foreseeing 

potential margin violations or tissue tears before they materialize. Furthermore, we demonstrate that 

this spatial intelligence can be directly translated into action, empowering autonomous robotic systems 

with stability and enabling real-time XR-human-robot collaboration that significantly enhances surgical 

efficiency. By endowing AI with the ability to think with clinical rigor and see with surgical precision, 

MedOS advances the field toward autonomous and reproducible healthcare where human intuition 

and machine intelligence co-evolve to assist patient care. 
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RESULTS 

MedOS: An Agentic World Model across Digital and Physical Scales 

Current medical systems largely work in isolation, lacking the capability to unify abstract clinical 

reasoning with physical intervention 8,9. To bridge this gap, MedOS creates a unified agentic world 

model that connects the digital world of longitudinal history with the physical world of surgery (Figure 

1A). The architecture functions across two fundamental planes, Digital and Physical, to align medical 

logic with procedural reality. 

 

At Level 1 (Digital World), the system operates within a semantic and clinical logic framework to 

establish the strategic baseline. It integrates Step 1 (Macro-Context) to process lifelong tokens, 

identifying patient phenotypes such as cirrhosis and risks like portal hypertension. This converges with 

Step 2 (Meso-Context) for perioperative planning, where MedOS analyzes recent clinical events to 

detect states like coagulopathy and unstable hemodynamics, explicitly formulating a plan to minimize 

tissue trauma and ensure strict hemostasis. 

 

Crucially, the architecture transitions into Level 2 (Physical World), a domain of embodied and spatial 

intelligence designed for XR-Robot-Human Collaboration. Through high-bandwidth XR Streaming and 

Robotic Control interfaces (controlling instruments like a laparoscope), MedOS models a 3D state 

space that includes the egocentric view, real-time scene depth, and instrument interactions. To master 

the high-stakes dynamics of Step 3 (Micro-Execution), we implemented a dual-system architecture: 

First, a reflex-like System 1 (Fast) module processes real-time streams to detect immediate adverse 

events. For instance, upon perceiving fibrotic adhesions, it reasons that the tissue is friable with high 

tear risk with traction, and immediately guides the robotic action to use suction dissection (avoid 

grasper). Second, A deliberative System 2 (Slow) module coordinates high-level planning and 

trajectory optimization based on the full digital context. Such architecture helps the XR-Cobot-Human 

collaboration in a unified space. 

 

MedOS builds on a specialized multi-agent framework. A Coordinator Agent orchestrates the workflow 

by decomposing complex queries for specialized modules, including EHR, Guideline, Radiology, and 

Pathology agents. The core Reasoning Agent executes a structured thinking template driven by 

evidence synthesis and causal inference. This process is governed by a Self-evolving Critic Agent that 

continuously evaluates plans, supported by a tool ocean providing capabilities like EHR reasoning or 

clinical research planning. 

 

We validated this architecture on challenging biomedical benchmarks, where MedOS consistently 

establishes a new state-of-the-art. On MedQA (USMLE) 10, MedOS achieves an accuracy of 
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approximately 97%, surpassing frontier models such as Gemini 3 Pro (~95%) and GPT-5.2 Thinking 

(~96%) (Figure 1B). Similarly, on the GPQA benchmark for expert-level reasoning 11, MedOS scores 

~94%, maintaining a robust lead over Claude 4.5 Opus (~90%) (Figure 1C). Furthermore, MedOS 

demonstrated inference-time scaling properties (Figure 1D); by increasing the Token budget for the 

system 2 thinking process (from 1x to 9x), the model's performance systematically improves, providing 

direct evidence that the dual-system design enables the AI to evolve its strategies for complex clinical 

scenarios. 

 

Figure 1. MedOS: An Agentic World Model across Digital and Physical Scales. (A) Schematic 

overview of the MedOS architecture. The framework bridges two fundamental planes: Level 1 (Digital 

World) and Level 2 (Physical World). Level 1 integrates semantic and clinical logic, processing 

longitudinal patient history (Macro-Context) and perioperative planning (Meso-Context) to form 

strategic plans. Level 2 represents the domain of embodied and spatial intelligence, designed to 
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facilitate XR-Robot-Human Collaboration. It connects high-bandwidth XR streaming with Robotic 

Control (e.g., Laparoscope) to simulate a real-time physics model. This level utilizes a dual-system 

cognitive architecture: a System 1 (Fast) agent for reflexive risk perception and immediate intervention, 

and a System 2 (Slow) agent for high-level trajectory planning. The bottom panel illustrates the multi-

agent workflow, orchestrated by a Coordinator Agent and optimized by a self-evolving Critic Agent. (B 

and C) Comparative evaluation of reasoning capabilities. MedOS achieves state-of-the-art accuracy 

on the (B) MedQA (USMLE) and (C) GPQA benchmarks, significantly outperforming frontier models 

including Gemini 3 Pro and GPT-5.2 Thinking. (D) Inference-time scaling analysis. The graph 

demonstrates the positive correlation between the token budget allocated for system 2 thinking 

processes and model performance, validating the efficacy of the deliberative reasoning module. 

Models (e.g., Gemini 3 Pro, Claude 4.5 Opus) which are evaluated in a fixed zero-shot setting (dashed 

lines), MedOS (green line) dynamically utilizes increased test-time compute to refine its reasoning 

path. All photographs shown are of the authors. 

 

 

MedOS Reasons Across Diverse Tasks and Democratizes Clinical Expertise 

To evaluate the capacity of our system to augment human intelligence and mitigate inherent cognitive 

limitations, we designed a human-AI collaboration study involving participants (n = 24) with varying 

levels of hierarchy, educational backgrounds, and physiological states (Figure 2A). The quantitative 

results indicate a profound leveling effect across all dimensions of expertise (Figure 2B). We observed 

that MedOS enabled registered nurses to improve their diagnostic accuracy from an unaided score of 

49% to an AI-augmented score of 77%, while medical students advanced from 72% to 91%. 

Remarkably, this augmentation allowed less experienced cohorts to rival or surpass the performance 

of attending physicians, who scored 79% unaided and reached a ceiling of 93% with assistance. 

Similarly, resident physicians improved from a baseline of 81% to 93%, suggesting that the system 

effectively bridges the knowledge gap inherent in traditional medical training hierarchies. 

 

Beyond baseline expertise, we investigated the ability of the system to counteract cognitive deficits 

caused by fatigue and educational disparities. While sleep-deprived post-call physicians suffered a 

significant drop in performance to 64% compared to their baseline state of 81%, the integration of 

MedOS restored their accuracy to 88%, surpassing even their well-rested baseline. Furthermore, the 

model effectively closed educational gaps; the lower-performance cohort from unranked schools saw 

a dramatic rise from 61% to 89%, narrowing the difference with the high-performance cohort that 

improved from 85% to 92%. The model also mastered unfamiliar domains, enabling specialists to 

operate with high precision outside their core disciplines. For instance, cardiologists evaluating 

oncology cases improved from 52% to 89%, and oncologists assessing dermatology questions rose 
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from 65% to 91%. Even in highly distinct pairings, such as dermatologists evaluating cardiology or 

general surgeons assessing rheumatology, accuracy surged from 49% to 86% and 51% to 88% 

respectively. These data demonstrate the capability of MedOS to democratizes clinical expertise 

across doctor with varying levels of hierarchy, educational backgrounds, and physiological states as 

well as across medical students and nurses. 

 

We next extended the capability of MedOS from passive question answering to autonomous clinical 

research, tasking the model with executing complex workflows that span from user queries to data-

driven report generation (Figure 2C-E). In the first case, a human user requested an investigation into 

the immune side effects of Semaglutide. In response, the MedOS coordinator agent formulated a multi-

step research plan and deployed specialized tools to access the FDA Adverse Event Reporting System 

(FAERS) database12 for a demographic analysis of immune adverse events. The system then 

autonomously executed a meta-analysis on clinical trial data, generating forest plots that revealed a 

statistically significant reduction in TNF-alpha and IL-6 levels in the GLP-1 RA group compared to 

placebo and insulin controls. This process demonstrates the ability of the model to synthesize raw 

pharmacovigilance data into actionable clinical evidence (Figure 2C). 

 

We next applied the system to genomic oncology to assess the prognostic implications of driver gene 

co-mutations (Figure 2D). The workflow commenced with a user request to analyze a cancer patient 

presenting with multiple gene mutations and to evaluate the impact of co-mutations on survival 

outcomes. MedOS responded by querying The Cancer Genome Atlas (TCGA)13 to map the top 20 

gene co-mutations, visualizing the frequency of interactions such as TP53-APC and KRAS-APC via a 

heatmap. Proceeding to survival analysis, the agent utilized statistical tools to generate Kaplan-Meier 

curves, which uncovered that patients with TP53 and EGFR co-mutations in head and neck cancer, 

as well as those with TP53 and SMAD4 co-mutations in colon cancer, faced significantly worse survival 

probabilities (P < 0.001) compared to single-mutation or wild-type cohorts, partly consistent with prior 

studies14,15. These findings highlight the capacity of the system to perform complex bioinformatics 

tasks and stratify patient risk profiles based on high-dimensional genomic data. 

 

Finally, we explored the complex mechanisms of immunotherapy resistance by linking metabolic 

pathways to PD-1 antibody efficacy (Figure 2E). The session began with a clinician inquiring about the 

connection between tumor metabolism and immune checkpoint inhibitor resistance. In response, 

MedOS integrated data from 21 clinical cohorts16 to perform a differential expression analysis, 

successfully identifying metabolic pathways such as glycosaminoglycan (GAG) biosynthesis and 

taurine metabolism as significantly enriched in non-responders. Interestingly, the system generated t-

SNE projections visualizing the single-cell clustering of responders versus non-responders, explicitly 
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mapping the intensity of taurine metabolism to the resistant phenotype across melanoma and NSCLC 

samples. This case illustrates the potential of MedOS to function as a co-investigator that can uncover 

novel biological mechanisms and suggest therapeutic targets by autonomously integrating multi-omics 

data. 
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Figure 2. MedOS Reasons Across Diverse Medical Tasks and Democratizes Clinical Expertise. 

(A) Schematic of the human-AI collaboration study. Participants with varying hierarchies, educational 

backgrounds, and fatigue levels utilize MedOS in an XR-AI-Human space to solve clinical problems 

(MedQA), aiming to evaluate the system's ability to mitigate cognitive deficits. (B) Quantitative 

evaluation on the MedQA benchmark across four critical dimensions. The bar charts demonstrate that 

MedOS: (1) Democratizes Expertise, elevating Registered Nurses and Medical Students to 

performance levels comparable to Attending Physicians; (2) Overcomes Fatigue Limits, significantly 

restoring the performance of sleep-deprived (Post-call) physicians; (3) Masters Unfamiliar Domains, 

enabling specialists (e.g., Cardiologists) to achieve high accuracy in out-of-distribution fields (e.g., 

Oncology); and (4) Balances Educational Disparities, closing the gap between residents from top-tier 

and unranked medical schools. (C–E) Demonstration of Autonomous Clinical Research capabilities 

across diverse tasks. (C) Case 1: Investigation of Semaglutide's immune effects. MedOS 

autonomously accesses the FAERS database for demographic analysis and performs meta-analysis 

on inflammatory factors (TNF-α and IL-6). (D) Case 2: Analysis of cancer co-mutations. The system 

queries TCGA data to map top gene co-mutations and executes Kaplan-Meier survival analysis for 

Head & Neck and Colon cancers. (E) Case 3: Exploration of immunotherapy resistance. MedOS 

integrates clinical cohorts to perform differential expression analysis on metabolic pathways, 

visualizing the link between metabolites (e.g., Taurine) and PD-1 antibody response via t-SNE 

projections. All photographs shown are of the authors. 

 

 

 

Training MedOS To See and Reason with Spatial Intelligence 

To enable the AI to perceive the physical reality of surgery beyond static frames, we manually 

assembled MedSuperVision (MSV), a large-scale, expert-annotated surgical video dataset from open-

access educational resources, designed to benchmark clinical operation understanding (Figure 3A). 

We devised a rigorous four-phase curation protocol: Phase I aggregated diverse egocentric videos 

enriched by surgeon's narrative and expert commentary to capture intent; phase II processed this raw 

footage through time-frame segmentation, chain-of-thought extraction, and patient health information 

removal, resulting in a split of 80% for training and 20% for validation. After quality control, the dataset 

contains videos of 85,398 minutes, spans multiple disciplines, dominated by hepatobiliary and 

gastrointestinal surgeries but also covering urologic, vascular, and thoracic procedures (Figure 3B). 

We observed a realistic video duration distribution, ranging from short clips (<10 min) to extended 

procedures (>120 min), with the majority falling in the 60-120 minute range. All these videos feature 

narrations by 1,882 clinical experts describing each surgery. 
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Following the dataset construction, we utilized this benchmark to train the MedOS world model using 

a dual-system training strategy (Figure 3A, Phase III). We employed supervised fine-tuning (SFT) 

followed by group relative policy optimization (GRPO)17 based on Qwen3-VL-8B-Instruct18 to 

distinctively optimize two sub-modules: a system 1 (fast) module trained for immediate next action and 

risk detection, and a system 2 (slow) module optimized for trajectory & chain-of-thought planning. We 

observed through comparative evaluation that while frontier models like Gemini 3 Pro falter in dynamic 

tasks, MedOS outperforms baselines by consistent margins. For example, in system 1 benchmarks 

(Figure 3C), MedOS achieves balanced instrument recall and leads significantly in contact detection 

rate (~85% vs. ~80%) and action recognition rate (~82% vs. ~75%). 

 

We further noted that the performance gap widens significantly when evaluating complex reasoning 

on Unseen Disciplines (Figure 3E). In the radar chart analysis, MedOS demonstrates superior 

capability in risk reasoning and next step prediction, scoring between ~80-90%, whereas the general 

Gemini 3 Pro model drops to ~70%. MedOS maintains a distinct advantage in causal inference and 

context reasoning. Finally, to validate clinical utility, we conducted a blinded human expert rating 

(Figure 3F), composed of 5 licensed medical doctors who rated 100 scenes for MedOS and Gemini 3 

Pro. As a result, MedOS was declared the winner in approximately 60% of test cases, compared to a 

~15% win rate for Gemini 3 Pro and a ~25% tie rate. Together, these data validated MedOS’ application 

in real-world surgical interpretation. 
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Figure 3. MedSuperVision: A Large-Scale Benchmark and Dual-System Training for Physical 

Perception (A) The MedSuperVision (MSV) data curation and training pipeline. The protocol involves 

four phases: (I) aggregation of egocentric videos with expert narratives; (II) dataset generation with 

time-frame segmentation and chain-of-thought extraction; (III) dual-system training using Supervised 

Fine-Tuning (SFT) and Group Relative Policy Optimization (GRPO) to distinctively optimize system 1 

(risk/action) and system 2 (trajectory/reasoning) modules; and (IV) multi-level benchmarking. (B) 

Distribution of the MSV dataset by surgical discipline (left) and procedure duration (right), highlighting 

diversity across Hepatobiliary, Gastrointestinal, and Urology specialties. (C) Quantitative assessment 

of system 1 (Fast) capabilities. MedOS outperforms the baseline (Gemini 3 Pro) in high-frequency 
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tasks, including instrument recall, contact detection, and action recognition. (D) Quantitative 

assessment of system 2 (Slow) capabilities. MedOS demonstrates superior performance in complex 

cognitive tasks such as context reasoning and causal inference. (E) Radar chart illustrating model 

generalization on unseen surgical disciplines. MedOS maintains robust performance across all axes 

compared to the baseline. (F) Clinical validation via blinded human expert rating. MedOS-generated 

guidance was preferred in approximately 60% of test cases. 

 

 

MedOS Unlocks Spatial Intelligence for Physics-Aware Surgical Reasoning 

To decode the latent 3D structure of the operating field from 2D egocentric frames, we positioned 

MedOS to demonstrate Spatial Intelligence, the ability to not just recognize objects, but to understand 

their 3D position, mechanical interactions, and causal consequences. In depth & spatial parsing tasks 

(Figure 4A), the model inputs a temporal observation window to resolve spatial ambiguities. We 

observed that it successfully parses occlusion states, estimating the harmonic scalpel tip depth 

posterior to hilar plate and localizing it relative to hidden critical structures like the glissonian pedicle. 

Notably, the model grounds this estimation in physical cues, reasoning that the trajectory in indicates 

tunneling angle and surface tissue bulge confirms subsurface occupancy. 

 

We next analyzed the forces and mechanics of surgery via dynamic scene graphs to understand how 

physical actions alter the anatomical environment (Figure 4B). We inferred spatial relation reasoning 

by categorizing complex maneuvers such as blunt dissection involving traction and counter-traction. 

Specifically, the model decomposes this action into precise force vectors, identifying that the grasper 

pulls tissue while the scalpel strips the plane. Crucially, it evaluates the resulting tissue state as taut 

or approaching its elastic limit, deriving the physics-based inference that opposing vectors create a 

critical separation gap. This ability to translate visual data into mechanical forces demonstrates that 

MedOS partly understands the physical consequences of instrument interaction beyond mere 

semantic classification. 

 

We finally examined MedOS as a predictive world model capable of counterfactual prediction, 

simulating hypothetical scenarios to foresee adverse events before they materialize (Figure 4C). We 

observed that it successfully predicts potential failures such as bleeding risk, margin violation, and 

traction error based on current instrument trajectories. Quantitative evaluation validated these 

capabilities (Figure 4D), where MedOS achieves recall rates of approximately 82% in spatial relation 

reasoning and 78% in depth and spatial parsing, significantly outperforming the baseline Gemini 3 Pro 

which scores between 60% and 70%. The performance gap is most pronounced in counterfactual 

prediction, where MedOS achieves a recall of 68% compared to the baseline 32%, highlighting the 
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specialized world model superior ability to anticipate physical consequences in high-stakes 

environments. These quantitative results establish the superiority of a specialized world model in 

anticipating physical consequences within high-stakes environments. 

 

To further validate the fidelity of our world model, we deployed MedOS to perform generative world 

reconstruction across a large-scale cohort of 1,103 patients (Figure 4E). By synthesizing high-fidelity 

3D representations and dense depth maps from sparse egocentric video inputs, the system 

reconstructed the complex topography of surgical fields ranging from uterine cavities to vascular beds. 

This large-scale generation provides a crucial digital twin of diverse patients, serving as a high-fidelity 

environment where robotic agents can be trained and tested without risk to human patients. The 

comparison between ground truth and generated worlds confirms that the model captures fine-grained 

textural details and geometric depth essential for realistic simulation. Ultimately, this capacity for large-

scale 3D reconstruction transforms the system from a passive analyzer into a generative engine 

capable of creating immersive training environments for both human surgeons and autonomous robots. 
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Figure 4. Spatial Intelligence Empowers Physics-Aware Reasoning and XR-Robotic 

Collaboration. 
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(A and B) Visualization of MedOS's spatial intelligence capabilities. (A) Depth & Spatial Parsing: The 

model analyzes a temporal observation window (t-1 to t+1) to resolve occlusion states, estimating the 

depth of the harmonic scalpel relative to the hidden Glissonian pedicle based on tissue deformation 

cues. (B) Dynamic Scene Graph generation: MedOS decomposes surgical maneuvers (e.g., blunt 

dissection) into physical force vectors (traction vs. counter-traction) and evaluates tissue tension 

states (e.g., Taut) to infer safety margins. (C) Examples of Counterfactual Prediction. The model 

simulates what-if scenarios to anticipate adverse events such as bleeding risks, margin violations, and 

traction errors before they materialize. (D) Quantitative recall rates for spatial intelligence tasks. 

MedOS significantly surpasses Gemini 3 Pro in depth parsing, spatial relation reasoning, and 

counterfactual prediction. (E) Application in Generative World Reconstruction (n = 1,103). Comparison 

of Ground Truth (left) with MedOS-generated 3D representations (center) and depth maps (right), 

demonstrating the platform's utility for immersive XR surgical simulation. (F) Evaluation of autonomous 

robotic control. The MedOS-driven robotic system demonstrates superior instrument stability 

compared to a junior doctor, exhibiting significantly lower metrics in static jitter, instrument drift (over 3 

mins), and horizon tilt (over 10 mins). (G) Validation of real-time XR-Robot-Human Collaboration. The 

setup integrates MedOS livestreaming directly into XR glasses to guide robotic manipulation. The bar 

chart confirms that this collaborative loop enhances surgical efficiency, reducing procedure time for 

tasks such as Laparoscopic Cholecystectomy and Urethrovesical Anastomosis compared to 

unassisted human performance. The robotic and XR experiments were conducted in vitro using 

surgical simulators. No human patients or live animals were involved in any part of the physical 

experiments. The retrospective data used for model training (MedSuperVision) were sourced from de-

identified, open-access educational repositories, ensuring strict privacy compliance. All photographs 

shown are of the authors. 

 

Autonomous Robotic Control and XR-Enabled Human Collaboration  

To translate the spatial intelligence of MedOS into physical action, we integrated the world model with 

a robotic surgical system to evaluate its capacity for autonomous instrument control (Figure 4F). We 

firstly compared the stability of a MedOS-driven robotic arm against that of a junior doctor during a 

laparoscopic holding task on a surgery model. The quantitative analysis focused on precision metrics 

including static jitter, instrument drift over three minutes, and horizon tilt over ten minutes. We observed 

that the AI-controlled system exhibited superior stability, maintaining significantly lower pixel deviation 

in jitter and drift compared to the human operator, who showed marked fluctuations due to 

physiological tremors. Furthermore, the robotic system maintained a balanced horizon level, whereas 

the junior doctor struggled with gradual tilt over time. These results further confirm that MedOS can 

effectively dampen the physiological inconsistencies of human motor control to achieve balanced 

stability in static surgical tasks. 
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We finally established a framework for real-time XR-Robot-Human collaboration, positioning the 

surgeon in a mixed reality environment where MedOS guidance is livestreamed directly to XR glasses 

(Figure 4G). In this setup, the human operator controls the robotic manipulators while receiving 

augmented visual overlays from the world model. We validated the efficacy of this collaborative system 

by measuring the procedure time across three distinct simulated surgeries, specifically laparoscopic 

cholecystectomy, urethrovesical anastomosis, and salpingostomy. The comparative data revealed that 

the XR-augmented cohort completed tasks significantly faster than the unassisted human group, with 

the most pronounced efficiency gain observed in the complex anastomosis procedure. This reduction 

in operative time suggests that the cognitive offloading provided by the MedOS visual guidance allows 

the surgeon to focus on execution rather than navigation. Ultimately, this demonstrates that 

synergizing human intuition with AI-driven spatial augmentation creates a surgical team that is more 

efficient than either entity operating alone. 
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DISCUSSION 

The trajectory of medicine has historically bifurcated into two distinct streams: diagnostic reasoning 

systems that excel at data but with limited physical capability, and physical systems that possess 

precision but limited semantic understanding19. MedOS represents a shift by unifying these streams 

into a single embodied world model that bridges the digital and physical worlds20,21. Unlike standard 

vision-language models that treat surgical video as a passive sequence of frames 22, MedOS interprets 

the medical processes as a dynamic physical state space. By grounding the high-level reasoning of 

large language models into the egocentric reality of the surgery, we demonstrate that AI can transcend 

the role of a static consultant to become an active collaborator capable of guiding robotic execution 2. 

This transition from AI that reads to AI that operates is critical for the next frontier of healthcare where 

outcomes are determined not just by the correct diagnosis but by the precision of physical intervention 

23. 

 

A central idea of MedOS is its architectural mimicry of human neurocognition through a dual-system 

mechanism. In surgical practice, expert performance relies on the seamless switching between expert 

planning and deliberate action. MedOS resolves this by decoupling trajectory planning from risk 

perception. The system 2 agent leverages the context of the digital world to optimize strategic workflow, 

while the system 1 agent operates in the physical world, executing reflex-like visual processing to flag 

tissue deformation or bleeding risks in real-time. This architecture ensures that the collaborative loop 

between surgeons, XR interfaces, and robotic agents remains synchronized within the millisecond-

level constraints of surgical physics. 

 

True surgical intelligence requires more than object recognition; it demands spatial intelligence, an 

understanding of depth, occlusion, and tissue mechanics. By successfully performing counterfactual 

predictions, such as anticipating a vessel rupture before the instrument strikes, MedOS exhibits a 

rudimentary form of machine intuition, potentially allowing the system to function as a safety guardrail 

that anticipates untoward outcomes via depth parsing. Furthermore, the success of our robotic control 

experiments indicates that this spatial understanding can be directly translated into motor policy, 

allowing the AI to dampen physiological tremors and maintain instrument stability superior to human 

novices. 

 

Beyond realtime assistance, MedOS holds implications for medical education and global health equity. 

Medical training currently is limited by the scarcity of case volume and expert mentorship. By serving 

as a generative world model, MedOS can reconstruct high-fidelity digital twins from sparse video data, 

creating immersive environments for both human training and robotic simulation. This capability to 

digitize and potenrially replay the muscle memory of expert surgeons will offer a scalable solution to 
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the shortage of medical skills. Moreover, our validation of the democratization effect suggests that a 

MedOS-enabled headset could provide generalist surgeons with the specialist-level guidance required 

to perform complex procedures safely, effectively flattening the curve of surgical proficiency. 

 

Despite these advances, challenges remain in the translation to autonomous surgery. First, while 

MedOS operates with high inference speed, the latency of current XR hardware and wireless 

streaming can still impede the hard real-time requirements of haptic feedback loops. Second, our 

current world model is predominantly visual; integrating haptic sensors and force-feedback data will 

be necessary to achieve a complete understanding of tissue interaction. Third, the sim-to-real gap 

persists; while MedOS excels in predictive reasoning and collaborative control, closing the loop to 

allow the AI to autonomously execute complex maneuvers requires rigorous safety verification and 

fault-tolerant control policies. Future work will focus on integrating multimodal sensory streams and 

expanding the MedSuperVision benchmark to include multi-surgeon and multi-robot collaborations. 

Ultimately, MedOS establishes the computational foundation for the future of interventional medicine 

where human intuition and artificial intelligence converge to ensure the future that every patient 

receives expert-level care. 

 

In summary, MedOS establishes a world model for embodied medical intelligence, bridging the gap 

between abstract clinical reasoning and physical surgical execution. By synergizing a dual-system 

cognitive architecture with a physics-aware world model, we enable AI to transcend the digital screen 

and actively participate in the operating room via XR-enabled human-robot collaboration. Validated on 

the large-scale MedSuperVision benchmark, MedOS suggests that applying expert-level diagnostic 

logic may facilitate better management of the dynamic complexity of surgery. Ultimately, this platform 

offers a scalable path toward autonomous intervention, where human-AI collaboration democratizes 

access to expert surgical care and push forward the boundaries of medicine. 
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METHODS 

MedOS System Architecture and Core Agents  

The MedOS framework functions as a unified agentic world model designed to bridge the historical 

divide between abstract clinical reasoning and physical surgical execution. As illustrated in Figure 1A, 

the architecture operates across two fundamental planes, the Digital World and the Physical World, to 

align medical logic with surgical reality. The system integrates a multi-agent workflow orchestrated by 

a Coordinator Agent that decomposes complex queries for specialized modules, ensuring that high-

level strategic planning translates effectively into real-time intervention. By grounding abstract 

knowledge into a dynamic state space, the platform enables the AI to function not merely as a 

consultant but as a perceiving co-physician capable of active collaboration. Below, the roles of specific 

agents and the dual-system cognitive architecture are detailed to illustrate their collective function. 

Dual-System Cognitive Architecture To master the high-stakes dynamics of interventional medicine, 

MedOS mimics expert human cognition through a dual-system mechanism. This architecture 

operationalizes the seamless toggling between deliberate strategy and reflexive action observed in 

clinical practice. The System 1 Fast module processes real-time egocentric video streams to handle 

millisecond-level risk perception and reflex-like guidance. Upon perceiving adverse states such as 

fibrotic adhesions, it immediately reasons about tissue friability and guides robotic action to specific 

interventions like suction dissection. Conversely, the System 2 Slow module coordinates high-level 

planning and trajectory optimization based on the full digital context. It processes macro-context such 

as patient demographics and meso-context like perioperative plans to ensure that immediate actions 

align with long-term clinical goals. 

Coordinator and Specialized Agents The Coordinator Agent serves as the central orchestration 

node, managing the workflow by breaking down complex clinical queries into structured sub-tasks. It 

distributes these tasks to a suite of specialized agents, including an EHR Agent for longitudinal history, 

a Guideline Agent for standard of care, a Radiology Agent for imaging analysis, and a Pathology Agent 

for histological data. This distributed processing ensures that all dimensions of a clinical case are 

evaluated with domain-specific rigor. 

Reasoning and Critic Agents The core Reasoning Agent executes a structured thinking template 

driven by evidence synthesis and causal inference. It integrates outputs from specialized agents to 

formulate cohesive clinical strategies. To ensure safety and reliability, a Self-evolving Critic Agent 

continuously evaluates these plans. This agent functions as a governance mechanism, capable of 
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rejecting unsafe proposals, issuing warnings, or approving valid strategies, thereby creating a robust 

quality control loop within the reasoning process. 

The MedOS Agentic Tool System MedOS integrates a diverse array of digital and physical tools to 

facilitate the transition from information retrieval to physical action. The system employs a tool ocean 

that provides capabilities ranging from information synthesis to spatial reconstruction. 

Digital Logic Tools To support the reasoning process in the Digital World (Level 1), the system 

utilizes specialized computational tools. These include PubMed_Search for literature retrieval, 

FDA_Drug for pharmacovigilance data, and a Surgical_Risk_Calculator for quantitative risk 

assessment. For longitudinal analysis, the system employs tools to process lifelong tokens, identifying 

patient phenotypes such as cirrhosis and risks like portal hypertension. This suite allows the system 

to establish a strategic baseline grounded in comprehensive clinical evidence. 

Physical Perception and Control Interface In the Physical World (Level 2), MedOS models a 3D 

state space that includes the egocentric view, real-time scene depth, and instrument interactions. The 

Anatomy_Recon_Tool is deployed to decode visual input from extended reality glasses, enabling the 

system to execute counterfactual prediction. To translate this spatial intelligence into action, the 

system interfaces with high-bandwidth XR Streaming and Robotic Control modules. This allows 

MedOS to simulate a physics model where it can reason and predict tissue features, effectively linking 

digital analysis to physical instrument control. 

Dual-System Learning and Self-Evolution 

We demonstrate that the MedOS world model possesses capabilities for both training-time 

optimization and inference-time scaling. This allows the system to evolve its performance for both 

reflexive physical tasks and complex cognitive reasoning. 

Dual-System Training Strategy To distinctively optimize the two sub-modules of our cognitive 

architecture, we employed a training strategy combining Supervised Fine-Tuning (SFT) and Group 

Relative Policy Optimization (GRPO) based on Qwen3-VL-8B-Instruct. For the System 1 Fast module, 

the GRPO objective focused on immediate next action prediction and risk detection, optimizing the 

model for high-frequency visual processing. For the System 2 Slow module, the optimization targeted 

trajectory planning and chain-of-thought reasoning. This bifurcated training approach ensures that the 

model achieves state-of-the-art performance in both dynamic physical tasks and abstract logical 

reasoning. 
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Model Specification and Training Recipe We utilized Qwen3-VL-8B-Instruct as the backbone. The 

dual-system architecture is implemented via two distinct Low-Rank Adaptation (LoRA) modules 

tailored for different distinct objectives: the System 1 module is optimized for latency-sensitive object 

detection and action classification, while the System 2 module employs Group Relative Policy 

Optimization (GRPO) to reward long-chain reasoning steps. The physics model is computationally 

defined as a video prediction head that generates future frames (t+1) conditioned on instrument force 

vectors. This allows the model to simulate tissue deformation (e.g., stretching, tearing) in latent space 

before executing actions. 

Inference-Time Scaling Beyond static training, MedOS demonstrates inference-time scaling 

properties. By increasing the token budget allocated for the System 2 thinking process from 1x to 9x, 

we observed a systematic improvement in model performance. This positive correlation provides direct 

evidence that the dual-system design enables the AI to think harder and evolve its strategies for 

complex clinical scenarios, effectively adapting its computational effort to the difficulty of the task at 

hand. 

Benchmark Design, Baselines, and Evaluation Methods  

Construction of MedSuperVision Dataset To enable the AI to perceive the physical reality of surgery 

beyond static frames, we manually assembled MedSuperVision (MSV), a large-scale, expert-

annotated surgical video dataset. We devised a rigorous four-phase curation protocol. Phase I 

involved the aggregation of diverse egocentric videos enriched by expert narratives to capture intent. 

Phase II processed this footage through time-frame segmentation (t-1, t, t+1) by 10 seconds, chain-

of-thought extraction, and patient health information removal. The resulting dataset contains 85,398 

minutes of video spanning multiple disciplines including hepatobiliary, gastrointestinal, urology, 

vascular, and thoracic procedures. All videos feature narrations by 1,882 clinical experts in the 

educational surgery videos. The dataset was split into 80% for training and 20% for validation. 

Reasoning Evaluation To validate the reasoning capabilities of the system, we utilized challenging 

biomedical benchmarks. On MedQA (USMLE), MedOS was evaluated against frontier models 

including Gemini 3 Pro, GPT-5.2 Thinking, and Claude 4.5 Opus. Similarly, performance was 

assessed on the GPQA benchmark for expert-level reasoning. We further extended the evaluation to 

autonomous clinical research tasks, quantifying the system's ability to execute workflows such as 

meta-analysis of FAERS data and survival analysis of TCGA genomic cohorts. 

Spatial Intelligence Evaluation To evaluate physical perception, we designed specific tasks to test 

spatial intelligence. Depth & Spatial Parsing involved analyzing a temporal observation window to 
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resolve occlusion states and estimate the relative depth of instruments. Spatial Relation Reasoning 

required the model to decompose complex maneuvers like blunt dissection into force vectors and 

tissue tension states. Counterfactual Prediction tested the model's ability to foresee adverse events 

such as bleeding risks or margin violations before they materialized. Performance was measured using 

recall rates and compared against the baseline Gemini 3 Pro model. 

Human Expert Rating To validate clinical utility, we conducted a blinded human expert rating 

composed of 5 licensed medical doctors. These experts rated 100 surgical scenes processed by both 

MedOS and Gemini 3 Pro. The win rate was calculated to determine the preference for MedOS-

generated guidance in real-world surgical interpretation. 

Experimental Validation of Physical Interaction  

Robotic Control Validation To translate spatial intelligence into physical action, we integrated the 

world model with a robotic surgical system. We compared the stability of a MedOS-driven robotic arm 

against that of a junior doctor during a laparoscopic holding task. The quantitative analysis focused on 

precision metrics including static jitter (pixel deviation), instrument drift over three minutes, and horizon 

tilt over ten minutes. This comparison aimed to verify the system's ability to dampen physiological 

inconsistencies and maintain instrument stability. 

XR-Enabled Human Collaboration Study We established a framework for real-time XR-Robot-

Human collaboration, positioning the surgeon in a mixed reality environment where MedOS guidance 

is livestreamed directly to XR glasses. To evaluate the efficacy of this system, we measured the 

procedure time across three distinct simulated surgeries: laparoscopic cholecystectomy, 

urethrovesical anastomosis, and salpingostomy. We compared the performance of an XR-augmented 

cohort against an unassisted human group to quantify efficiency gains provided by the collaborative 

loop. 

Human-AI Collaboration Study To evaluate the system's capacity to democratize expertise, we 

designed a study involving participants (n = 24) with varying levels of hierarchy, educational 

backgrounds, and physiological states. Participants included registered nurses, medical students, 

resident physicians, and attending physicians. We measured diagnostic accuracy on MedQA tasks 

under unaided and AI-augmented conditions. We specifically investigated the system's impact on 

mitigating cognitive deficits in sleep-deprived post-call physicians and closing educational gaps 

between graduates of top-tier and unranked medical schools. 
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Open-access patient data collection This study utilizes de-identified data from open-access 

educational repositories. PHI Removal: We implemented a privacy pipeline. For the videos that patient 

appears, we blurred their faces and text. Chain-of-Thought Extraction: Expert narratives were 

transcribed and extracted using Qwen, and Gemini-3-Pro was employed to structure these 

unstructured narrations into formal step-by-step reasoning traces, which were subsequently verified 

by the licenced doctor for accuracy. 

Human Participation The human-AI collaboration component was conducted in a simulated 

environment to evaluate software performance. This study involves participants composed of doctors, 

nurses, and medical students for the purpose of evaluating AI model performance (via exam question 

answering) and subjective quality rating. Written/Oral informed consent was obtained from all 

participants. The study was conducted in adherence to the Declaration of Helsinki. The robotic and 

XR experiments were conducted in vitro using surgical simulators. No human patients or animals were 

involved in the experiments. The MedSuperVision dataset was constructed exclusively from publicly 

available, open-access educational resources. All data were retrospective and fully de-identified prior 

to analysis. No direct interaction with patients occurred, and no private health information (PHI) was 

accessed or utilized. All photographs shown are of the authors. In accordance with regulations 45 CFR 

46, this portion of the study does not qualify as human subjects research requiring institutional review 

board (IRB) oversight. 

Statistical Analysis  

For genomic oncology analysis, we utilized Kaplan-Meier curves to visualize survival probabilities and 

the Log-rank test to determine statistical significance (P < 0.001) between co-mutation and wild-type 

cohorts. In the meta-analysis of clinical trial data, forest plots were generated to visualize differences 

in inflammatory factor levels. All comparisons in the human-AI collaboration study were quantified by 

calculating the percentage improvement in accuracy scores across the defined cohorts. 

Data and Code Availability 

The MedSuperVision dataset, agentic framework, and training scripts will be available upon request 

(https://forms.gle/oWJwuri18y4rRuAb8).  


