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Abstract

Medicine historically separates abstract clinical reasoning from physical intervention. We bridge this
divide with MedQOS, a general-purpose embodied world model. Mimicking human cognition via a dual-
system architecture, MedOS demonstrates superior reasoning on biomedical benchmarks and
autonomously executes complex clinical research. To extend this intelligence physically, the system
simulates medical procedures as a physics-aware model to foresee adverse events. Generating and
validating on the MedSuperVision benchmark, MedOS exhibits spatial intelligence for reasoning and
action. Crucially, we demonstrate that this platform democratizes clinical expertise and narrows the
performance gap between junior and senior physicians. MedOS transforms clinical intervention

towards a collaborative discipline where human intuition and machine intelligence co-evolve.
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INTRODUCTION

Medicine relies on the integration of clinical reasoning to diagnose disease and physical execution to
intervene. While recent advances in artificial intelligence have transformed the reasoning domain, with
large language models potentially achieving expert proficiency in medical licensing exams and
diagnostic dialogue, the physical domain of interventions remains a critical bottleneck’2. Clinical
outcomes depend not merely on static knowledge but on perception, dexterity, and real-time decision-
making under uncertainty. Current medical Al remains largely disembodied and confined to the digital
analysis of electronic health records or static imaging, leaving it unable to perceive or act in the
dynamic reality of procedural medicine 3*. Conversely, surgical robotics provide precision tele-
operation but potentially remain unintelligent that are blind to anatomical context and somewhat

dependent on human control 58.

To bridge this fundamental divide, we introduce MedOS, a unified collaborative intelligence platform
that renders clinical environments perceivable and operable by Al. MedOS represents a conceptual
shift from passive data analysis to the idea of embodied world model. It integrates agentic reasoning
with extended reality enabled multimodal interfaces and robotic control systems to create an end-to-
end framework that links longitudinal patient history in the digital world to real-time interaction in the
physical world. By grounding abstract medical knowledge into a dynamic state space, MedOS enables
the Al to function not merely as a consultant but as a perceiving co-physician capable of active

collaboration.

The architectural innovation of MedOS lies in its mimicry of expert human cognition through a dual-
system mechanism 78, In clinical practice, a physician or surgeon should seamlessly toggle between
expert strategy and deliberate action. MedOS operationalizes this by employing a system 2 slow agent
to process macro-context such as demographics and meso-context such as perioperative plans, while
simultaneously deploying a system 1 fast agent to handle millisecond-level risk perception and reflex-
like guidance. This architecture allows the Al to simulate a physics model by reasoning about force
vectors, predicting tissue responses, and identifying adverse events such as bleeding risks in real-

time.

In this work, we present an end-to-end instantiation of MedOS for the interventional domain. On the
reasoning front, the system achieves state-of-the-art accuracy on challenging biomedical benchmarks
and outperforms frontier models through a self-evolving critique loop. To enable physical perception,
we constructed MedSuperVision, a large-scale benchmark of egocentric surgical videos annotated
with expert narratives and instrument dynamics. Recognizing that general-purpose vision-language

models struggle with the subtle textures and depth of biological tissue, we trained a domain-



specialized world model using group relative policy optimization. This training enables MedOS to
decode visual input from extended reality glasses to execute counterfactual prediction, foreseeing
potential margin violations or tissue tears before they materialize. Furthermore, we demonstrate that
this spatial intelligence can be directly translated into action, empowering autonomous robotic systems
with stability and enabling real-time XR-human-robot collaboration that significantly enhances surgical
efficiency. By endowing Al with the ability to think with clinical rigor and see with surgical precision,
MedOS advances the field toward autonomous and reproducible healthcare where human intuition

and machine intelligence co-evolve to assist patient care.



RESULTS

MedOS: An Agentic World Model across Digital and Physical Scales

Current medical systems largely work in isolation, lacking the capability to unify abstract clinical
reasoning with physical intervention &°. To bridge this gap, MedOS creates a unified agentic world
model that connects the digital world of longitudinal history with the physical world of surgery (Figure
1A). The architecture functions across two fundamental planes, Digital and Physical, to align medical

logic with procedural reality.

At Level 1 (Digital World), the system operates within a semantic and clinical logic framework to
establish the strategic baseline. It integrates Step 1 (Macro-Context) to process lifelong tokens,
identifying patient phenotypes such as cirrhosis and risks like portal hypertension. This converges with
Step 2 (Meso-Context) for perioperative planning, where MedOS analyzes recent clinical events to
detect states like coagulopathy and unstable hemodynamics, explicitly formulating a plan to minimize

tissue trauma and ensure strict hemostasis.

Crucially, the architecture transitions into Level 2 (Physical World), a domain of embodied and spatial
intelligence designed for XR-Robot-Human Collaboration. Through high-bandwidth XR Streaming and
Robotic Control interfaces (controlling instruments like a laparoscope), MedOS models a 3D state
space that includes the egocentric view, real-time scene depth, and instrument interactions. To master
the high-stakes dynamics of Step 3 (Micro-Execution), we implemented a dual-system architecture:
First, a reflex-like System 1 (Fast) module processes real-time streams to detect immediate adverse
events. For instance, upon perceiving fibrotic adhesions, it reasons that the tissue is friable with high
tear risk with traction, and immediately guides the robotic action to use suction dissection (avoid
grasper). Second, A deliberative System 2 (Slow) module coordinates high-level planning and
trajectory optimization based on the full digital context. Such architecture helps the XR-Cobot-Human

collaboration in a unified space.

MedOS builds on a specialized multi-agent framework. A Coordinator Agent orchestrates the workflow
by decomposing complex queries for specialized modules, including EHR, Guideline, Radiology, and
Pathology agents. The core Reasoning Agent executes a structured thinking template driven by
evidence synthesis and causal inference. This process is governed by a Self-evolving Critic Agent that
continuously evaluates plans, supported by a tool ocean providing capabilities like EHR reasoning or

clinical research planning.

We validated this architecture on challenging biomedical benchmarks, where MedOS consistently
establishes a new state-of-the-art. On MedQA (USMLE) '°, MedOS achieves an accuracy of



approximately 97%, surpassing frontier models such as Gemini 3 Pro (~95%) and GPT-5.2 Thinking
(~96%) (Figure 1B). Similarly, on the GPQA benchmark for expert-level reasoning ', MedOS scores
~94%, maintaining a robust lead over Claude 4.5 Opus (~90%) (Figure 1C). Furthermore, MedOS
demonstrated inference-time scaling properties (Figure 1D); by increasing the Token budget for the
system 2 thinking process (from 1x to 9x), the model's performance systematically improves, providing

direct evidence that the dual-system design enables the Al to evolve its strategies for complex clinical

scenarios.
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Figure 1. MedOS: An Agentic World Model across Digital and Physical Scales. (A) Schematic
overview of the MedOS architecture. The framework bridges two fundamental planes: Level 1 (Digital
World) and Level 2 (Physical World). Level 1 integrates semantic and clinical logic, processing
longitudinal patient history (Macro-Context) and perioperative planning (Meso-Context) to form

strategic plans. Level 2 represents the domain of embodied and spatial intelligence, designed to



facilitate XR-Robot-Human Collaboration. It connects high-bandwidth XR streaming with Robotic
Control (e.g., Laparoscope) to simulate a real-time physics model. This level utilizes a dual-system
cognitive architecture: a System 1 (Fast) agent for reflexive risk perception and immediate intervention,
and a System 2 (Slow) agent for high-level trajectory planning. The bottom panel illustrates the multi-
agent workflow, orchestrated by a Coordinator Agent and optimized by a self-evolving Critic Agent. (B
and C) Comparative evaluation of reasoning capabilities. MedOS achieves state-of-the-art accuracy
on the (B) MedQA (USMLE) and (C) GPQA benchmarks, significantly outperforming frontier models
including Gemini 3 Pro and GPT-5.2 Thinking. (D) Inference-time scaling analysis. The graph
demonstrates the positive correlation between the token budget allocated for system 2 thinking
processes and model performance, validating the efficacy of the deliberative reasoning module.
Models (e.g., Gemini 3 Pro, Claude 4.5 Opus) which are evaluated in a fixed zero-shot setting (dashed
lines), MedOS (green line) dynamically utilizes increased test-time compute to refine its reasoning

path. All photographs shown are of the authors.

MedOS Reasons Across Diverse Tasks and Democratizes Clinical Expertise

To evaluate the capacity of our system to augment human intelligence and mitigate inherent cognitive
limitations, we designed a human-Al collaboration study involving participants (n = 24) with varying
levels of hierarchy, educational backgrounds, and physiological states (Figure 2A). The quantitative
results indicate a profound leveling effect across all dimensions of expertise (Figure 2B). We observed
that MedOS enabled registered nurses to improve their diagnostic accuracy from an unaided score of
49% to an Al-augmented score of 77%, while medical students advanced from 72% to 91%.
Remarkably, this augmentation allowed less experienced cohorts to rival or surpass the performance
of attending physicians, who scored 79% unaided and reached a ceiling of 93% with assistance.
Similarly, resident physicians improved from a baseline of 81% to 93%, suggesting that the system

effectively bridges the knowledge gap inherent in traditional medical training hierarchies.

Beyond baseline expertise, we investigated the ability of the system to counteract cognitive deficits
caused by fatigue and educational disparities. While sleep-deprived post-call physicians suffered a
significant drop in performance to 64% compared to their baseline state of 81%, the integration of
MedOS restored their accuracy to 88%, surpassing even their well-rested baseline. Furthermore, the
model effectively closed educational gaps; the lower-performance cohort from unranked schools saw
a dramatic rise from 61% to 89%, narrowing the difference with the high-performance cohort that
improved from 85% to 92%. The model also mastered unfamiliar domains, enabling specialists to
operate with high precision outside their core disciplines. For instance, cardiologists evaluating

oncology cases improved from 52% to 89%, and oncologists assessing dermatology questions rose



from 65% to 91%. Even in highly distinct pairings, such as dermatologists evaluating cardiology or
general surgeons assessing rheumatology, accuracy surged from 49% to 86% and 51% to 88%
respectively. These data demonstrate the capability of MedOS to democratizes clinical expertise
across doctor with varying levels of hierarchy, educational backgrounds, and physiological states as

well as across medical students and nurses.

We next extended the capability of MedOS from passive question answering to autonomous clinical
research, tasking the model with executing complex workflows that span from user queries to data-
driven report generation (Figure 2C-E). In the first case, a human user requested an investigation into
the immune side effects of Semaglutide. In response, the MedOS coordinator agent formulated a multi-
step research plan and deployed specialized tools to access the FDA Adverse Event Reporting System
(FAERS) database'? for a demographic analysis of immune adverse events. The system then
autonomously executed a meta-analysis on clinical trial data, generating forest plots that revealed a
statistically significant reduction in TNF-alpha and IL-6 levels in the GLP-1 RA group compared to
placebo and insulin controls. This process demonstrates the ability of the model to synthesize raw

pharmacovigilance data into actionable clinical evidence (Figure 2C).

We next applied the system to genomic oncology to assess the prognostic implications of driver gene
co-mutations (Figure 2D). The workflow commenced with a user request to analyze a cancer patient
presenting with multiple gene mutations and to evaluate the impact of co-mutations on survival
outcomes. MedOS responded by querying The Cancer Genome Atlas (TCGA)'3 to map the top 20
gene co-mutations, visualizing the frequency of interactions such as TP53-APC and KRAS-APC via a
heatmap. Proceeding to survival analysis, the agent utilized statistical tools to generate Kaplan-Meier
curves, which uncovered that patients with TP53 and EGFR co-mutations in head and neck cancer,
as well as those with TP53 and SMAD4 co-mutations in colon cancer, faced significantly worse survival
probabilities (P < 0.001) compared to single-mutation or wild-type cohorts, partly consistent with prior
studies'15. These findings highlight the capacity of the system to perform complex bioinformatics

tasks and stratify patient risk profiles based on high-dimensional genomic data.

Finally, we explored the complex mechanisms of immunotherapy resistance by linking metabolic
pathways to PD-1 antibody efficacy (Figure 2E). The session began with a clinician inquiring about the
connection between tumor metabolism and immune checkpoint inhibitor resistance. In response,
MedOS integrated data from 21 clinical cohorts'® to perform a differential expression analysis,
successfully identifying metabolic pathways such as glycosaminoglycan (GAG) biosynthesis and
taurine metabolism as significantly enriched in non-responders. Interestingly, the system generated t-

SNE projections visualizing the single-cell clustering of responders versus non-responders, explicitly



mapping the intensity of taurine metabolism to the resistant phenotype across melanoma and NSCLC
samples. This case illustrates the potential of MedOS to function as a co-investigator that can uncover
novel biological mechanisms and suggest therapeutic targets by autonomously integrating multi-omics
data.
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Figure 2. MedOS Reasons Across Diverse Medical Tasks and Democratizes Clinical Expertise.
(A) Schematic of the human-Al collaboration study. Participants with varying hierarchies, educational
backgrounds, and fatigue levels utilize MedOS in an XR-Al-Human space to solve clinical problems
(MedQA), aiming to evaluate the system's ability to mitigate cognitive deficits. (B) Quantitative
evaluation on the MedQA benchmark across four critical dimensions. The bar charts demonstrate that
MedOS: (1) Democratizes Expertise, elevating Registered Nurses and Medical Students to
performance levels comparable to Attending Physicians; (2) Overcomes Fatigue Limits, significantly
restoring the performance of sleep-deprived (Post-call) physicians; (3) Masters Unfamiliar Domains,
enabling specialists (e.g., Cardiologists) to achieve high accuracy in out-of-distribution fields (e.g.,
Oncology); and (4) Balances Educational Disparities, closing the gap between residents from top-tier
and unranked medical schools. (C—E) Demonstration of Autonomous Clinical Research capabilities
across diverse tasks. (C) Case 1: Investigation of Semaglutide's immune effects. MedOS
autonomously accesses the FAERS database for demographic analysis and performs meta-analysis
on inflammatory factors (TNF-a and IL-6). (D) Case 2: Analysis of cancer co-mutations. The system
queries TCGA data to map top gene co-mutations and executes Kaplan-Meier survival analysis for
Head & Neck and Colon cancers. (E) Case 3: Exploration of immunotherapy resistance. MedOS
integrates clinical cohorts to perform differential expression analysis on metabolic pathways,
visualizing the link between metabolites (e.g., Taurine) and PD-1 antibody response via t-SNE

projections. All photographs shown are of the authors.

Training MedOS To See and Reason with Spatial Intelligence

To enable the Al to perceive the physical reality of surgery beyond static frames, we manually
assembled MedSuperVision (MSV), a large-scale, expert-annotated surgical video dataset from open-
access educational resources, designed to benchmark clinical operation understanding (Figure 3A).
We devised a rigorous four-phase curation protocol: Phase | aggregated diverse egocentric videos
enriched by surgeon's narrative and expert commentary to capture intent; phase Il processed this raw
footage through time-frame segmentation, chain-of-thought extraction, and patient health information
removal, resulting in a split of 80% for training and 20% for validation. After quality control, the dataset
contains videos of 85,398 minutes, spans multiple disciplines, dominated by hepatobiliary and
gastrointestinal surgeries but also covering urologic, vascular, and thoracic procedures (Figure 3B).
We observed a realistic video duration distribution, ranging from short clips (<10 min) to extended
procedures (>120 min), with the majority falling in the 60-120 minute range. All these videos feature

narrations by 1,882 clinical experts describing each surgery.
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Following the dataset construction, we utilized this benchmark to train the MedOS world model using
a dual-system training strategy (Figure 3A, Phase lll). We employed supervised fine-tuning (SFT)
followed by group relative policy optimization (GRPO)' based on Qwen3-VL-8B-Instruct'® to
distinctively optimize two sub-modules: a system 1 (fast) module trained for immediate next action and
risk detection, and a system 2 (slow) module optimized for trajectory & chain-of-thought planning. We
observed through comparative evaluation that while frontier models like Gemini 3 Pro falter in dynamic
tasks, MedOS outperforms baselines by consistent margins. For example, in system 1 benchmarks
(Figure 3C), MedOS achieves balanced instrument recall and leads significantly in contact detection

rate (~85% vs. ~80%) and action recognition rate (~82% vs. ~75%).

We further noted that the performance gap widens significantly when evaluating complex reasoning
on Unseen Disciplines (Figure 3E). In the radar chart analysis, MedOS demonstrates superior
capability in risk reasoning and next step prediction, scoring between ~80-90%, whereas the general
Gemini 3 Pro model drops to ~70%. MedOS maintains a distinct advantage in causal inference and
context reasoning. Finally, to validate clinical utility, we conducted a blinded human expert rating
(Figure 3F), composed of 5 licensed medical doctors who rated 100 scenes for MedOS and Gemini 3
Pro. As a result, MedOS was declared the winner in approximately 60% of test cases, compared to a
~15% win rate for Gemini 3 Pro and a ~25% tie rate. Together, these data validated MedOS’ application

in real-world surgical interpretation.
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tasks, including instrument recall, contact detection, and action recognition. (D) Quantitative
assessment of system 2 (Slow) capabilities. MedOS demonstrates superior performance in complex
cognitive tasks such as context reasoning and causal inference. (E) Radar chart illustrating model
generalization on unseen surgical disciplines. MedOS maintains robust performance across all axes
compared to the baseline. (F) Clinical validation via blinded human expert rating. MedOS-generated

guidance was preferred in approximately 60% of test cases.

MedOS Unlocks Spatial Intelligence for Physics-Aware Surgical Reasoning

To decode the latent 3D structure of the operating field from 2D egocentric frames, we positioned
MedOS to demonstrate Spatial Intelligence, the ability to not just recognize objects, but to understand
their 3D position, mechanical interactions, and causal consequences. In depth & spatial parsing tasks
(Figure 4A), the model inputs a temporal observation window to resolve spatial ambiguities. We
observed that it successfully parses occlusion states, estimating the harmonic scalpel tip depth
posterior to hilar plate and localizing it relative to hidden critical structures like the glissonian pedicle.
Notably, the model grounds this estimation in physical cues, reasoning that the trajectory in indicates

tunneling angle and surface tissue bulge confirms subsurface occupancy.

We next analyzed the forces and mechanics of surgery via dynamic scene graphs to understand how
physical actions alter the anatomical environment (Figure 4B). We inferred spatial relation reasoning
by categorizing complex maneuvers such as blunt dissection involving traction and counter-traction.
Specifically, the model decomposes this action into precise force vectors, identifying that the grasper
pulls tissue while the scalpel strips the plane. Crucially, it evaluates the resulting tissue state as taut
or approaching its elastic limit, deriving the physics-based inference that opposing vectors create a
critical separation gap. This ability to translate visual data into mechanical forces demonstrates that
MedOS partly understands the physical consequences of instrument interaction beyond mere

semantic classification.

We finally examined MedOS as a predictive world model capable of counterfactual prediction,
simulating hypothetical scenarios to foresee adverse events before they materialize (Figure 4C). We
observed that it successfully predicts potential failures such as bleeding risk, margin violation, and
traction error based on current instrument trajectories. Quantitative evaluation validated these
capabilities (Figure 4D), where MedOS achieves recall rates of approximately 82% in spatial relation
reasoning and 78% in depth and spatial parsing, significantly outperforming the baseline Gemini 3 Pro
which scores between 60% and 70%. The performance gap is most pronounced in counterfactual

prediction, where MedOS achieves a recall of 68% compared to the baseline 32%, highlighting the
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specialized world model superior ability to anticipate physical consequences in high-stakes
environments. These quantitative results establish the superiority of a specialized world model in

anticipating physical consequences within high-stakes environments.

To further validate the fidelity of our world model, we deployed MedOS to perform generative world
reconstruction across a large-scale cohort of 1,103 patients (Figure 4E). By synthesizing high-fidelity
3D representations and dense depth maps from sparse egocentric video inputs, the system
reconstructed the complex topography of surgical fields ranging from uterine cavities to vascular beds.
This large-scale generation provides a crucial digital twin of diverse patients, serving as a high-fidelity
environment where robotic agents can be trained and tested without risk to human patients. The
comparison between ground truth and generated worlds confirms that the model captures fine-grained
textural details and geometric depth essential for realistic simulation. Ultimately, this capacity for large-
scale 3D reconstruction transforms the system from a passive analyzer into a generative engine

capable of creating immersive training environments for both human surgeons and autonomous robots.
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(A and B) Visualization of MedOS's spatial intelligence capabilities. (A) Depth & Spatial Parsing: The
model analyzes a temporal observation window (t-1 to t+1) to resolve occlusion states, estimating the
depth of the harmonic scalpel relative to the hidden Glissonian pedicle based on tissue deformation
cues. (B) Dynamic Scene Graph generation: MedOS decomposes surgical maneuvers (e.g., blunt
dissection) into physical force vectors (traction vs. counter-traction) and evaluates tissue tension
states (e.g., Taut) to infer safety margins. (C) Examples of Counterfactual Prediction. The model
simulates what-if scenarios to anticipate adverse events such as bleeding risks, margin violations, and
traction errors before they materialize. (D) Quantitative recall rates for spatial intelligence tasks.
MedOS significantly surpasses Gemini 3 Pro in depth parsing, spatial relation reasoning, and
counterfactual prediction. (E) Application in Generative World Reconstruction (n = 1,103). Comparison
of Ground Truth (left) with MedOS-generated 3D representations (center) and depth maps (right),
demonstrating the platform's utility for immersive XR surgical simulation. (F) Evaluation of autonomous
robotic control. The MedOS-driven robotic system demonstrates superior instrument stability
compared to a junior doctor, exhibiting significantly lower metrics in static jitter, instrument drift (over 3
mins), and horizon tilt (over 10 mins). (G) Validation of real-time XR-Robot-Human Collaboration. The
setup integrates MedOS livestreaming directly into XR glasses to guide robotic manipulation. The bar
chart confirms that this collaborative loop enhances surgical efficiency, reducing procedure time for
tasks such as Laparoscopic Cholecystectomy and Urethrovesical Anastomosis compared to
unassisted human performance. The robotic and XR experiments were conducted in vitro using
surgical simulators. No human patients or live animals were involved in any part of the physical
experiments. The retrospective data used for model training (MedSuperVision) were sourced from de-
identified, open-access educational repositories, ensuring strict privacy compliance. All photographs

shown are of the authors.

Autonomous Robotic Control and XR-Enabled Human Collaboration

To translate the spatial intelligence of MedOS into physical action, we integrated the world model with
a robotic surgical system to evaluate its capacity for autonomous instrument control (Figure 4F). We
firstly compared the stability of a MedOS-driven robotic arm against that of a junior doctor during a
laparoscopic holding task on a surgery model. The quantitative analysis focused on precision metrics
including static jitter, instrument drift over three minutes, and horizon tilt over ten minutes. We observed
that the Al-controlled system exhibited superior stability, maintaining significantly lower pixel deviation
in jitter and drift compared to the human operator, who showed marked fluctuations due to
physiological tremors. Furthermore, the robotic system maintained a balanced horizon level, whereas
the junior doctor struggled with gradual tilt over time. These results further confirm that MedOS can
effectively dampen the physiological inconsistencies of human motor control to achieve balanced

stability in static surgical tasks.
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We finally established a framework for real-time XR-Robot-Human collaboration, positioning the
surgeon in a mixed reality environment where MedOS guidance is livestreamed directly to XR glasses
(Figure 4G). In this setup, the human operator controls the robotic manipulators while receiving
augmented visual overlays from the world model. We validated the efficacy of this collaborative system
by measuring the procedure time across three distinct simulated surgeries, specifically laparoscopic
cholecystectomy, urethrovesical anastomosis, and salpingostomy. The comparative data revealed that
the XR-augmented cohort completed tasks significantly faster than the unassisted human group, with
the most pronounced efficiency gain observed in the complex anastomosis procedure. This reduction
in operative time suggests that the cognitive offloading provided by the MedOS visual guidance allows
the surgeon to focus on execution rather than navigation. Ultimately, this demonstrates that
synergizing human intuition with Al-driven spatial augmentation creates a surgical team that is more

efficient than either entity operating alone.
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DISCUSSION

The trajectory of medicine has historically bifurcated into two distinct streams: diagnostic reasoning
systems that excel at data but with limited physical capability, and physical systems that possess
precision but limited semantic understanding’®. MedOS represents a shift by unifying these streams
into a single embodied world model that bridges the digital and physical worlds?°2!. Unlike standard
vision-language models that treat surgical video as a passive sequence of frames 22, MedOS interprets
the medical processes as a dynamic physical state space. By grounding the high-level reasoning of
large language models into the egocentric reality of the surgery, we demonstrate that Al can transcend
the role of a static consultant to become an active collaborator capable of guiding robotic execution 2.
This transition from Al that reads to Al that operates is critical for the next frontier of healthcare where

outcomes are determined not just by the correct diagnosis but by the precision of physical intervention
23

A central idea of MedOS is its architectural mimicry of human neurocognition through a dual-system
mechanism. In surgical practice, expert performance relies on the seamless switching between expert
planning and deliberate action. MedOS resolves this by decoupling trajectory planning from risk
perception. The system 2 agent leverages the context of the digital world to optimize strategic workflow,
while the system 1 agent operates in the physical world, executing reflex-like visual processing to flag
tissue deformation or bleeding risks in real-time. This architecture ensures that the collaborative loop
between surgeons, XR interfaces, and robotic agents remains synchronized within the millisecond-

level constraints of surgical physics.

True surgical intelligence requires more than object recognition; it demands spatial intelligence, an
understanding of depth, occlusion, and tissue mechanics. By successfully performing counterfactual
predictions, such as anticipating a vessel rupture before the instrument strikes, MedOS exhibits a
rudimentary form of machine intuition, potentially allowing the system to function as a safety guardrail
that anticipates untoward outcomes via depth parsing. Furthermore, the success of our robotic control
experiments indicates that this spatial understanding can be directly translated into motor policy,
allowing the Al to dampen physiological tremors and maintain instrument stability superior to human

novices.

Beyond realtime assistance, MedOS holds implications for medical education and global health equity.
Medical training currently is limited by the scarcity of case volume and expert mentorship. By serving
as a generative world model, MedOS can reconstruct high-fidelity digital twins from sparse video data,
creating immersive environments for both human training and robotic simulation. This capability to

digitize and potenrially replay the muscle memory of expert surgeons will offer a scalable solution to
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the shortage of medical skills. Moreover, our validation of the democratization effect suggests that a
MedOS-enabled headset could provide generalist surgeons with the specialist-level guidance required

to perform complex procedures safely, effectively flattening the curve of surgical proficiency.

Despite these advances, challenges remain in the translation to autonomous surgery. First, while
MedOS operates with high inference speed, the latency of current XR hardware and wireless
streaming can still impede the hard real-time requirements of haptic feedback loops. Second, our
current world model is predominantly visual; integrating haptic sensors and force-feedback data will
be necessary to achieve a complete understanding of tissue interaction. Third, the sim-to-real gap
persists; while MedOS excels in predictive reasoning and collaborative control, closing the loop to
allow the Al to autonomously execute complex maneuvers requires rigorous safety verification and
fault-tolerant control policies. Future work will focus on integrating multimodal sensory streams and
expanding the MedSuperVision benchmark to include multi-surgeon and multi-robot collaborations.
Ultimately, MedOS establishes the computational foundation for the future of interventional medicine
where human intuition and artificial intelligence converge to ensure the future that every patient

receives expert-level care.

In summary, MedOS establishes a world model for embodied medical intelligence, bridging the gap
between abstract clinical reasoning and physical surgical execution. By synergizing a dual-system
cognitive architecture with a physics-aware world model, we enable Al to transcend the digital screen
and actively participate in the operating room via XR-enabled human-robot collaboration. Validated on
the large-scale MedSuperVision benchmark, MedOS suggests that applying expert-level diagnostic
logic may facilitate better management of the dynamic complexity of surgery. Ultimately, this platform
offers a scalable path toward autonomous intervention, where human-Al collaboration democratizes

access to expert surgical care and push forward the boundaries of medicine.
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METHODS

MedOS System Architecture and Core Agents

The MedOS framework functions as a unified agentic world model designed to bridge the historical
divide between abstract clinical reasoning and physical surgical execution. As illustrated in Figure 1A,
the architecture operates across two fundamental planes, the Digital World and the Physical World, to
align medical logic with surgical reality. The system integrates a multi-agent workflow orchestrated by
a Coordinator Agent that decomposes complex queries for specialized modules, ensuring that high-
level strategic planning translates effectively into real-time intervention. By grounding abstract
knowledge into a dynamic state space, the platform enables the Al to function not merely as a
consultant but as a perceiving co-physician capable of active collaboration. Below, the roles of specific

agents and the dual-system cognitive architecture are detailed to illustrate their collective function.

Dual-System Cognitive Architecture To master the high-stakes dynamics of interventional medicine,
MedOS mimics expert human cognition through a dual-system mechanism. This architecture
operationalizes the seamless toggling between deliberate strategy and reflexive action observed in
clinical practice. The System 1 Fast module processes real-time egocentric video streams to handle
millisecond-level risk perception and reflex-like guidance. Upon perceiving adverse states such as
fibrotic adhesions, it immediately reasons about tissue friability and guides robotic action to specific
interventions like suction dissection. Conversely, the System 2 Slow module coordinates high-level
planning and trajectory optimization based on the full digital context. It processes macro-context such
as patient demographics and meso-context like perioperative plans to ensure that immediate actions

align with long-term clinical goals.

Coordinator and Specialized Agents The Coordinator Agent serves as the central orchestration
node, managing the workflow by breaking down complex clinical queries into structured sub-tasks. It
distributes these tasks to a suite of specialized agents, including an EHR Agent for longitudinal history,
a Guideline Agent for standard of care, a Radiology Agent for imaging analysis, and a Pathology Agent
for histological data. This distributed processing ensures that all dimensions of a clinical case are

evaluated with domain-specific rigor.

Reasoning and Critic Agents The core Reasoning Agent executes a structured thinking template
driven by evidence synthesis and causal inference. It integrates outputs from specialized agents to
formulate cohesive clinical strategies. To ensure safety and reliability, a Self-evolving Critic Agent

continuously evaluates these plans. This agent functions as a governance mechanism, capable of
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rejecting unsafe proposals, issuing warnings, or approving valid strategies, thereby creating a robust

quality control loop within the reasoning process.

The MedOS Agentic Tool System MedOS integrates a diverse array of digital and physical tools to
facilitate the transition from information retrieval to physical action. The system employs a tool ocean

that provides capabilities ranging from information synthesis to spatial reconstruction.

Digital Logic Tools To support the reasoning process in the Digital World (Level 1), the system
utilizes specialized computational tools. These include PubMed_Search for literature retrieval,
FDA Drug for pharmacovigilance data, and a Surgical_Risk_Calculator for quantitative risk
assessment. For longitudinal analysis, the system employs tools to process lifelong tokens, identifying
patient phenotypes such as cirrhosis and risks like portal hypertension. This suite allows the system

to establish a strategic baseline grounded in comprehensive clinical evidence.

Physical Perception and Control Interface In the Physical World (Level 2), MedOS models a 3D
state space that includes the egocentric view, real-time scene depth, and instrument interactions. The
Anatomy_Recon_Tool is deployed to decode visual input from extended reality glasses, enabling the
system to execute counterfactual prediction. To translate this spatial intelligence into action, the
system interfaces with high-bandwidth XR Streaming and Robotic Control modules. This allows
MedOS to simulate a physics model where it can reason and predict tissue features, effectively linking

digital analysis to physical instrument control.

Dual-System Learning and Self-Evolution

We demonstrate that the MedOS world model possesses capabilities for both training-time
optimization and inference-time scaling. This allows the system to evolve its performance for both

reflexive physical tasks and complex cognitive reasoning.

Dual-System Training Strategy To distinctively optimize the two sub-modules of our cognitive
architecture, we employed a training strategy combining Supervised Fine-Tuning (SFT) and Group
Relative Policy Optimization (GRPO) based on Qwen3-VL-8B-Instruct. For the System 1 Fast module,
the GRPO objective focused on immediate next action prediction and risk detection, optimizing the
model for high-frequency visual processing. For the System 2 Slow module, the optimization targeted
trajectory planning and chain-of-thought reasoning. This bifurcated training approach ensures that the
model achieves state-of-the-art performance in both dynamic physical tasks and abstract logical

reasoning.
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Model Specification and Training Recipe We utilized Qwen3-VL-8B-Instruct as the backbone. The
dual-system architecture is implemented via two distinct Low-Rank Adaptation (LoRA) modules
tailored for different distinct objectives: the System 1 module is optimized for latency-sensitive object
detection and action classification, while the System 2 module employs Group Relative Policy
Optimization (GRPO) to reward long-chain reasoning steps. The physics model is computationally
defined as a video prediction head that generates future frames (t+1) conditioned on instrument force
vectors. This allows the model to simulate tissue deformation (e.g., stretching, tearing) in latent space

before executing actions.

Inference-Time Scaling Beyond static training, MedOS demonstrates inference-time scaling
properties. By increasing the token budget allocated for the System 2 thinking process from 1x to 9x,
we observed a systematic improvement in model performance. This positive correlation provides direct
evidence that the dual-system design enables the Al to think harder and evolve its strategies for
complex clinical scenarios, effectively adapting its computational effort to the difficulty of the task at
hand.

Benchmark Design, Baselines, and Evaluation Methods

Construction of MedSuperVision Dataset To enable the Al to perceive the physical reality of surgery
beyond static frames, we manually assembled MedSuperVision (MSV), a large-scale, expert-
annotated surgical video dataset. We devised a rigorous four-phase curation protocol. Phase |
involved the aggregation of diverse egocentric videos enriched by expert narratives to capture intent.
Phase Il processed this footage through time-frame segmentation (t-1, t, t+1) by 10 seconds, chain-
of-thought extraction, and patient health information removal. The resulting dataset contains 85,398
minutes of video spanning multiple disciplines including hepatobiliary, gastrointestinal, urology,
vascular, and thoracic procedures. All videos feature narrations by 1,882 clinical experts in the

educational surgery videos. The dataset was split into 80% for training and 20% for validation.

Reasoning Evaluation To validate the reasoning capabilities of the system, we utilized challenging
biomedical benchmarks. On MedQA (USMLE), MedOS was evaluated against frontier models
including Gemini 3 Pro, GPT-5.2 Thinking, and Claude 4.5 Opus. Similarly, performance was
assessed on the GPQA benchmark for expert-level reasoning. We further extended the evaluation to
autonomous clinical research tasks, quantifying the system's ability to execute workflows such as

meta-analysis of FAERS data and survival analysis of TCGA genomic cohorts.

Spatial Intelligence Evaluation To evaluate physical perception, we designed specific tasks to test

spatial intelligence. Depth & Spatial Parsing involved analyzing a temporal observation window to
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resolve occlusion states and estimate the relative depth of instruments. Spatial Relation Reasoning
required the model to decompose complex maneuvers like blunt dissection into force vectors and
tissue tension states. Counterfactual Prediction tested the model's ability to foresee adverse events
such as bleeding risks or margin violations before they materialized. Performance was measured using

recall rates and compared against the baseline Gemini 3 Pro model.

Human Expert Rating To validate clinical utility, we conducted a blinded human expert rating
composed of 5 licensed medical doctors. These experts rated 100 surgical scenes processed by both
MedOS and Gemini 3 Pro. The win rate was calculated to determine the preference for MedOS-

generated guidance in real-world surgical interpretation.

Experimental Validation of Physical Interaction

Robotic Control Validation To translate spatial intelligence into physical action, we integrated the
world model with a robotic surgical system. We compared the stability of a MedOS-driven robotic arm
against that of a junior doctor during a laparoscopic holding task. The quantitative analysis focused on
precision metrics including static jitter (pixel deviation), instrument drift over three minutes, and horizon
tilt over ten minutes. This comparison aimed to verify the system's ability to dampen physiological

inconsistencies and maintain instrument stability.

XR-Enabled Human Collaboration Study We established a framework for real-time XR-Robot-
Human collaboration, positioning the surgeon in a mixed reality environment where MedOS guidance
is livestreamed directly to XR glasses. To evaluate the efficacy of this system, we measured the
procedure time across three distinct simulated surgeries: laparoscopic cholecystectomy,
urethrovesical anastomosis, and salpingostomy. We compared the performance of an XR-augmented
cohort against an unassisted human group to quantify efficiency gains provided by the collaborative

loop.

Human-Al Collaboration Study To evaluate the system's capacity to democratize expertise, we
designed a study involving participants (n = 24) with varying levels of hierarchy, educational
backgrounds, and physiological states. Participants included registered nurses, medical students,
resident physicians, and attending physicians. We measured diagnostic accuracy on MedQA tasks
under unaided and Al-augmented conditions. We specifically investigated the system's impact on
mitigating cognitive deficits in sleep-deprived post-call physicians and closing educational gaps

between graduates of top-tier and unranked medical schools.
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Open-access patient data collection This study utilizes de-identified data from open-access
educational repositories. PHI Removal: We implemented a privacy pipeline. For the videos that patient
appears, we blurred their faces and text. Chain-of-Thought Extraction: Expert narratives were
transcribed and extracted using Qwen, and Gemini-3-Pro was employed to structure these
unstructured narrations into formal step-by-step reasoning traces, which were subsequently verified

by the licenced doctor for accuracy.

Human Participation The human-Al collaboration component was conducted in a simulated
environment to evaluate software performance. This study involves participants composed of doctors,
nurses, and medical students for the purpose of evaluating Al model performance (via exam question
answering) and subjective quality rating. Written/Oral informed consent was obtained from all
participants. The study was conducted in adherence to the Declaration of Helsinki. The robotic and
XR experiments were conducted in vitro using surgical simulators. No human patients or animals were
involved in the experiments. The MedSuperVision dataset was constructed exclusively from publicly
available, open-access educational resources. All data were retrospective and fully de-identified prior
to analysis. No direct interaction with patients occurred, and no private health information (PHI) was
accessed or utilized. All photographs shown are of the authors. In accordance with regulations 45 CFR
46, this portion of the study does not qualify as human subjects research requiring institutional review
board (IRB) oversight.

Statistical Analysis

For genomic oncology analysis, we utilized Kaplan-Meier curves to visualize survival probabilities and
the Log-rank test to determine statistical significance (P < 0.001) between co-mutation and wild-type
cohorts. In the meta-analysis of clinical trial data, forest plots were generated to visualize differences
in inflammatory factor levels. All comparisons in the human-Al collaboration study were quantified by

calculating the percentage improvement in accuracy scores across the defined cohorts.

Data and Code Availability
The MedSuperVision dataset, agentic framework, and training scripts will be available upon request
(https://forms.gle/oWJwuri18y4rRuAb8).
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